我们现在似乎有理由问这样的问题:“地球内部的强烈地震和火山
喷发等类似现象是什么力量造成的呢?”在提出这个问题之前,我们必
须先问这样一个问题:“什么是热量?”
我们都能感受到热的存在,并觉得这是理所当然的。我们对热的感
受总体来讲是来自太阳。我们能在阳光下感到热量的存在,而在阳光照
不到的地方则感受不到。退一步说,通常我们也能从点着的火、电灯泡、
散热器或是热水壶等等热的物体上感受到热量的存在。即使我们不知道
它们具体是什么,也肯定会知道它产生了什么样的作用:即热量从一个
物体传到另一个物体。当我们感到冷时,站在火的前面就能感受到热量
通过燃烧着的火传到了我们身上。如果在那儿站久了,我们就得离开火,
否则就会由于吸收了太多的热量而感到身体不舒服。如果我们把一壶凉
水放在火上加热,热量就会从火焰传送到水壶中,壶中的凉水便逐渐变
热直到沸腾。
我们能举出更多的例证使人们了解热量是一种难以捉摸的流体,它
同水的流动方式一样从一个物体流到另一个物体。在特定的条件下,每
种特定的物质只能容纳有限的热量。可以肯定一点,就是如果一壶热水
被放在一个温度较低的物体上,它就渐渐地凉下来,直到彻底变冷。
但是,1798 年美裔英国物理学家汤普生在为炮弹制造厂加工几根又
细又长的圆柱形金属时,又有了新发现:他在钻孔时注意到钻孔器传给
金属件大量的热量。在加工时他只得不间断地用水对金属进行冷却。在
一般情况下,人们会把这种现象理解为随着钻孔器对金属材料的不断切
削,金属材料中的热量就会随着被切掉的金属屑释放出来,使金属材料
升温。
汤普生注意到随着钻孔越来越深入,热量也会不断增大而不是逐渐
被释放掉。加工过程中释放出的热量足够烧开大量的水。如果让相应的
热量流回到金属中去,金属就能被熔化。简而言之,当金属以固体状态
存在时,它所释放出的热量比它可能容纳的热量要大得多。
多余那部分的热量是从哪来的呢?汤普生试图用一个钝钻头去钻金
属,由于不能顺利进行加工,所以只能削掉较少的金属屑,因此应该产
生较少的热量,但事实并非如此,实际上用钝钻孔器比用锋利的钻孔器
能产生更多的热量。从这个简单的实验中,他得出了下面的结论:热量
不是以流体形式存在,而是以某种运动方式存在。他认为钻孔器的运动
形式通过某种传递方式传递给金属材料,使得那些非常细小的金属微粒
(肉眼是看不到的)获得了这种运动形式,这就是他所观察到的热量。
汤普生得出这一结论,并找到了解决这一问题的正确方法。1803 年
英国化学家约翰·道尔顿进一步开阔了人类对微观世界的观察视野,使
我们了解到所有物质都是由小得看不见的微粒组成的,我们称它们为“原
子”。归根到底,世界上所有物质都是由原子构成的。原子通常组成一
个个的小群体,我们称之为“分子”。直到19 世纪60 年代英国数学家
詹姆斯·克拉克·麦克斯韦尔和澳大利亚物理学家路狄威治·爱德华·波
斯曼在各自的研究成果中对热量进行了有史以来最好的解释:热量是由
于原子和分子在空间的移动、振动和旋转等不规则运动造成的。这种观点就是“热的分子运动论”。