教学内容:九年义务教育五年制小学数学第八册l34页例2、例3.
教学目的:1.使学生掌握分数与除法的关系,并进行简单的应用。
2.培养学生动手操作的能力和抽象、概括、归纳、思维能力。
教、学具准备:投影仪、部分胶片、每组学生三个同样大小的圆形纸片、剪刀。
[评:本节目标的确定能从教材和学生的实际出发,既注重了知识技能的掌握,又注重了思维能力的培养,充分体现了大纲"知识、能力、品德教育"三位一体的思想。]
教学过程:
一、复习旧知(投影)
1. 表示什么意义?它的分数单位是什么?有几个这样的分数单位?
2.把4个苹果平均分给两个孩子,每个孩子分得多少个?怎样列式?
3.把一根钢管平均截成3段,每段的长度是这根管的几分之几?这里把谁看作单位"1"?
[评:有这三道练习题作铺垫,就为后面教学例2、3的"放"作了积极的孕伏。]
二、引入新课
教师提出问题:3除以7,商是多少?(板书:3÷7=)如果商不用小数表示,怎么办呢?学生一时语塞。今天我们学习了分数与除法的关系就能解决这个问题。
板书课题:分数与除法的关系
[评:这里教师注意创设问题情境,以3÷7其商不用小数表示,制造认知上的冲突,从而激发学生的学习兴趣和求知欲望。]
三、讨论操作
1.投影例2:工人师傅要把1米长的钢管平均截成3段,每段长多少?
教师让一学生读题,然后就如何解决这个问题,学生分组讨论,教师巡视,参与各小组的讨论,并适时点拨。
师:谁能把你们小组讨论的结果告诉大家?生:我们小组讨论的结果是这样的?因为钢管的长度是1米,把它平均分成3段,求每段的长,用除法,列式为:1÷3(板书:1÷3),但除不尽,商是一个循环小数,等于0.33……
师:说的好,但说到商是一个循环小数时,感到有点美中不足,故声音小了下来。那么是否还有其它的求法呢?
生:要把1米长的钢管平均分成3段,根据分数的意义,把1米长的钢管看作单位"1",求1段的长就是 米。(师板书: 米)
师:太棒了。这样所求的钢管长度不再是烦人的循环小数,而是一个简洁的分数。随即指着1÷3和 米,它们有什么关系?
生:相等关系。因为它们表示的是同一段钢管的长度,所以它们相等
师:由上可知:1除以3,商是用什么数表示的?
师生共同小结:整数除法不能整除时,可以用分数表示它们的商。
[评:教师放手让学生自己解决问题,根据学生已有的知识,从整数除法的意义和分数的意义入手,先从直观上初步建立起分数与除法的相等关系。]
2.投影例3:幼儿园里,老师把3个饼平均分给4个孩子,每个孩子分得多少个?
师:(1)要求每个孩子分得多少饼,怎样列式?(生说师板书:3÷4=)
(2)3除以4能否整除?我们能否像例2那样用分数表示它的商呢?
(3)如果能,那么商又是多少?现在老师把这个问题交给同学们,请拿出准备好的纸片和剪刀,用三个同样大小的圆形纸片比作三个饼,4人一组扮作幼儿园里的4个孩子,你们帮助幼儿园的老师分一分。看每个孩子分得多少个饼?
学生操作,教师巡回指导、点拨,然后小组汇报。
生:我们组是一个一个地分的。先把1个饼平均分成4份,得到4个,3个饼共得到12个,平均分给4个孩子,每个孩子分得3个士,拼在一起是 个饼。
生:我们组是把3个饼叠在一起,先平均分成4份,剪下其中的一份,再把这一份展开,拼在一起得到 个饼,所以每个孩子得到 个饼。(板书: 个)
师:两种分法都对,相比来说,哪种分法简便些?(后一种)下面请同学们看后一种的分饼过程。
投影图形,与书本上的图形完全相同。(制胶片时要做成抽拉式的,使3个饼的士部分可移动)(略)