范文大全
地理教学
地理科普
地理试题
地理课件
地理教案
地理学案
地理复习
地理图片
地理课本
地理书库
中国地图
世界地图
地理新闻
行政区划
小故事
作文素材
作文大全
范文大全
黑板报
手抄报

优化应用题教学,培养学生解决实际问题的能力(2)

时间:2011-04-02  归属:工作总结
2、注重学生思维过程、提高应用题的开放性
应用题应尽可能地体现开放性,一方面为解决某个问题而提供的信息可以不足,也可以有冗余,促使学生对这些信息进行分析、研究或补充、筛选,以获得有效信息,提高处理信息的能力;另一方面,从某些信息所得到的结论要有开放性,只要合理都应得到肯定。例如,在学习了“百分数的应用”后,我出示了下面一题:
例2、某校五年级共有学生78人,在参加植树劳动派一位同学去商店购买果汁,商店规定:单盒买每盒2元,买40盒装一箱9折优惠,买50盒装一箱8.8折优惠。怎样购买才能既让每个同学都能喝到一盒果汁,并且又最省钱?
我组织学生认真讨论,进行分析解答,学生经过讨论分析,得出了以下几个购买方案:
(1)、买单盒79盒:2×79=158(元)
(2)、买40盒装一箱,再买单盒39盒:2×40×0.9+2×39=150(元)
(3)、买50盒装一箱,再买单盒29盒:2×50×0.88+2×29=146(元)
(4)、买40盒装两箱:2×40×0.9×2=144(元)
比较决策,买40盒装两箱,既让每个同学喝一盒果汁还剩余1盒,又最省钱。
学生通过解答这样的应用题更能体现他们思维过程的积极有效,而不仅仅是正确;同时也能促使学生创造性地思考问题。
二、培养认真分析题目,让学生正确的理解题意,
1、抓住关键的数学信息点
在应用题中,有一些关键的数学信息点,抓住了这些数学信息点,就象拿到了解决问题的钥匙。
例如教学了“分数应用题”后,我出示下列一题:
例3、某人计划要加工200个零件,结果2天加工了这批零件的2/5,照这样计算,加工这批零件只要用几天?
这题的一般解法要先求出2天加工的零件个数,再求出每天加工的零件个数,最后再求出加工这批零件要用的天数。我启发学生找出这题中的一个重要条件:“ 2天加工了这批零件的2/5”,再问学生,从这个条件可以想到什么,学生经过思考,很快能说出,因为2天加工了这批零件的2/5,因此,可得,加工完这批零件要用的天数即为:2 ÷2/5=5(天)。
2、培养学生善于正确进行转化
有些应用题数量关系较为复杂,但只要善于运用转化,即能收到事半功倍的效果。例如教学了“分数应用题”后,我布置了下面一题:
例4、某校女生的人数是全校学生人数的40%多20人,但比男生少100人,问这所学校中有男生多少人?
解答这题有一定的难度,我启发学生:“女生的人数是全校学生人数的40%多20人,但比男生少100人”可以理解成为什么?学生经过思考,认为可将条件转化成:男生是全校人数的40%多(100+20)人。
因此,可求得全校的学生人数为:(100+20+20)÷(1-40%×2)=700(人)。这所学校的男生人数则为:700×40%+120=400(人),或为:700-(700×40%+20)=400(人)。
还有的学生提出了更简捷的解法,他提出,因为40%=2/5,即可将全校学生平均分成5份,女生占其中的2份多20人,男生则占全校学生人数中的3份少20人,因为全校人数的2份多20人比全校人数中的3份少20人要少100人,因此可求得每份人数为:100 + 20 + 20= 140(人),因此可求得男生人数为:140×3 — 20 = 400(人)。
这种解法解得十分巧妙,也使我真正认识到了在某种意义上讲,学生也是我们的老师。
三、给学生更多的自主解答权
在应用题教学中,我们教师为了解决难点,讲得往往太多,规范性的要求也提得太多,学生的解题策略仅仅是遵照老师指定的某一条路径去进行,虽然能在类同的练习中发挥较好,但一旦遇到新的类型就无从下手。为此,在应用题教学中应尽可能精讲,给学生更多的自主解答时间,并做到以下两点:
1、允许解答的个性化

教学中,我们有些教师过于强调应用题的分类,这样学生一拿到应用题就生搬硬套,套上一个类型,然后按老师的要求按步就班地解答。长期如此,学生解决实际问题的能力就得不到提高。因此我们教师在教学中应逐步淡化应用题的分类,淡化应用题的解答方法及过程的标准化要求,引导学生只要思维策略有效就正确,并让学生真正体现解题的个性化。例如教学了“工程问题”后,我向学生出示了下列一题:
例5、甲、乙两人计划加工一批零件,甲单独做8天完成,乙单独做10天完成,现在两人共同加工,经过5天后,比计划多加工个120个,问乙每天加工几个零件?
这题的一般解法是先求出这批零件的个数,再进而解答,我启发学生能否找出更简捷的解法,有些学生经过分析,提出了不同的解法:因为甲4天能加工计划的一半,乙5天能加工计划的一半,因为甲、乙共同加工了5天,乙正好加工了计划的一半,甲5天则要超过计划120个,而甲加工完计划的一半只要4天,这120个零件即是甲1(5-4)天的工作量,因为甲4天的工作量乙要5天才能完成,因此可得,乙每天加工零件的个数为:120×4÷5=96(个)。
这些学生的个性化解答,不但达到了我们教师教学的一定标准而且,真正培养学生解决问题的能力。
2、培养学生的创造性思维
 创造性思维的特征应该是新奇独特、别出心裁、突破常规或几方面兼而有之。应用题教学中更应注重学生的创造性。当然,这就要求给学生的思维以较大的自由空间,给学生以较多地选择余地。
 首先,要让学生自己选择喜欢的方法来分析问题,处理问题,这样才能使学生的思维通畅,创造才能可能。其次,要注意引导学生更多地解答方法,从而拓宽学生的思维空间,培养灵活多变的解题思维能力。例如在进行应用题复习时,我出示了下列一题:
例6、某人要加工一批零件,原计划每天加工630个,10天完成,后来因为采用了新工艺,实际只用了9天就完成了任务,求实际每天比原计划多加工几个零件?
这题的一般解法是先要求出这批零件的个数,再进而解答,我要求学生认真进行分析,找出更简捷的解答。有的学生提出,因为原计划每天加工630个,要10天才能完成,实际只用了9天就完成了原来10天才能完成的任务,即把原来1(10-9)天的工作量平均分配在9天完成,因此可得,实际每天比原计划多加工的零件个数为:630÷9=70(个)。这种解法真是一种独特的创新法。

加载更多内容...
  • 关键词:能力培养学生优化应用题教学解决实际问题
  • 上一篇:团委植树节总结
  • 下一篇:畜牧局饲料市场整治情况总结
  • 猜你喜欢()